research and development

December 1, 2012
By George I. Seffers
Three 100-foot towers at Wright-Patterson Air Force Base, Ohio, provide the Air Force Research Laboratory Sensors Directorate with new capabilities to perform radar research. The actual radars atop each tower were relocated from Rome, N.Y., as part of the 2005 Base Realignment and Closure.

U.S. Air Force researchers use 3-D printers and
 other cutting-edge concepts 
to create
 the next 
innovations.

There is no Moore’s Law for antennas because size reduction and performance improvement will always be subject to the limitations imposed by electromagnetic physics and material properties. But steady advances in computer technologies, such as electromagnetic modeling and simulation and 3-D printing, enable antenna technology researchers to push the limits of possibility on behalf of the warfighters.

October 29, 2012
George I. Seffers

The Department of Homeland Security Science and Technology Directorate (DHS S&T) has awarded 34 contracts to 29 academic and research organizations for research and development of solutions to cyber security challenges.

October 1, 2012
By Max Cacas

A new computing architecture emphasizes shared resources.

October 1, 2012
By Max Cacas

The National Intelligence University prepares for its fifth decade with a shift in focus and a change in venue.

September 21, 2012
By Rita Boland

The U.S. Defense Department has some hard decisions to make regarding where and how to optimize future research to counter chemical, biological, radiological and nuclear (CBRN) weapons. A new report outlines the challenges that military officials must tackle with department and other partners, warning that the amorphous nature of threats limits the ability to identify or mitigate them all individually.

July 27, 2012
By George Seffers

Excet Incorporated, Springfield, Virginia, was awarded a $7,793,502 cost-plus-fixed-fee contract for the research and development services in support of technology that detect chemical and biological agents. The U.S. Army Contracting Command, Aberdeen Proving Ground, Maryland, is the contracting activity.

July 2, 2012
By George Seffers

Science Applications International Corporation (SAIC), Albuquerque, New Mexico, and Advanced Technology International, Anderson, South Carolina, are each being awarded an indefinite-delivery/indefinite-quantity multiple award contract for engineering services located worldwide. The maximum dollar value, including the base period and two option years, for all contracts combined is $45 million. The work to be performed provides for engineering services such as research, development, test and evaluation support, development of designs and concepts and prototypes, development of test plans, tes

February 7, 2012
By George Seffers

Johns Hopkins University, Laurel, Maryland, is being awarded an up to $85 million indefinite-delivery/indefinite-quantity, task order contract to provide for advanced research, development, and engineering support technology programs for the Defense Advanced Research Projects Agency, the contracting activity.

December 12, 2011
By George Seffers

BAE Systems, Land and Armaments Division, Minneapolis, Minnesota, is being awarded an $11,658,980 cost-plus-fixed-fee contract for research and development activities associated with Integrated Power Systems power load modules design whose applications include pulsed power loads for future surface combatants. The Naval Sea Systems Command, Washington, D.C., is the contracting activity.

November 2010
By Rita Boland, SIGNAL Magazine

The U.S. Army’s Program Executive Office Soldier is working with a focused fervor to carry out its responsibility to refine the development of and supply virtually every piece of equipment soldiers wear or carry. As troops engage in persistent conflicts around the globe, they require a new set of technologies to achieve their missions. To ensure victory on the battlefield, these tools must make forces more lethal, survivable, sustainable and agile. Office personnel are working to ensure they do just that, whether the situation calls for a new uniform or a state-of-the-art technical device.

July 21, 2010
By George Seffers

Aegis Technologies Group, Inc., Huntsville, Alabama, was recently awarded an $8 million cost-plus-fixed-fee contract to develop a reconfigurable arbitrary-waveform scene projector under the "OSD, Test Resource Management Center Multispectral Test" program.  U.S. Army Research, Development and Engineering Command Contracting Center, Aberdeen Installation Contracting Division, Aberdeen Proving Ground, Maryland, is the contracting activity.

June 25, 2010
By Jordan Garegnani

Scientists at Oak Ridge National Laboratory have devised a sensor that can detect substances at the nanoscopic scale. What potential practical daily uses could this technology be used for? Are there any ethical considerations for this technology? How would this affect national and public security?

Tuesday, February 02, 2010
By Rita Boland

Nestled deep inside NASA’s Johnson Space Center in Houston is the Defense Department’s Human Spaceflight Payloads Office, where a team of personnel strives to find rides into space for military experiments. Tests that affect defense, security and commercial interests route through the office in the hopes of making it aboard a manned mission off the planet. The work in the office is only part of a program that aims to place as many research projects into space as possible. Successes from the experiments range from technologies now in everyday use to products that save lives on the battlefield.

August 17, 2009
By Rita Boland

Researchers from military laboratories are studying the human element in detecting explosive devices, trying to determine if certain people have an instinct for locating the weapons and, if so, what characteristics they share. The results add another piece to the puzzle in the Defense Department’s efforts to counter improvised explosive devices. The work already has uncovered certain facets of information that military commanders can use to identify troops with innate abilities or to train warfighters in specific skills.

June 17, 2009
By Beverly Schaeffer

Research and development is the seed corn of our technology driven world. With the commercial sector providing many of the military's new technologies, the old lines delineating military and commercial technologies are blurring into nonexistence. The defense community is working with academia and the private sector to an ever greater degree, and the rapid pace of commercial information technology innovation is increasing the importance of laboratory research.

June 2009
By Henry S. Kenyon

A revolutionary new technology may allow future warfighters to command their equipment to physically change itself to meet new operational needs or to form spare parts or tools. Researchers are developing techniques to order materials to self-assemble or alter their shape, perform a function and then disassemble themselves. These capabilities offer the possibility for morphing aircraft and ground vehicles, uniforms that can alter themselves to be comfortable in any climate, and “soft” robots that flow like mercury through small openings to enter caves and bunker complexes.

June 2009
By Rita Boland

A three-year science and technology project is aiming to transform abstract quantum theories into actual quantum products. A goal of the effort is to create the world’s first silicon spin-based quantum bit, which would be a major advancement in the development of quantum computing. Additionally, the work includes its own theoretical piece that addresses the design of a quantum error correction circuit. Applications include enhancing the basic understanding of spin device physics for potential spin-based microelectronics and determining the feasibility of certain aspects of silicon quantum bits for future research and use.

June 2009
By Henry S. Kenyon

Warfighters one day may have electronics literally painted onto their uniforms thanks to a new technology for printing circuitry. The process involves spraying a film composed of carbon nanotubes onto a surface to form thin, flexible circuits. This capability potentially can be applied to cloth, plastics or other soft materials, opening the possibility for communications devices built into clothing or solar panels sprayed onto the tops of tents.

June 2009
By Rita Boland and Maryann Lawlor

A Massachusetts Institute of Technology researcher is developing a way to take simple descriptions of behavior patterns and assemble them to uncover complex dynamics. Once achieved, this capability would enable data to drive the learning mechanism with as little external intervention as possible. Although only in the basic research phase, this methodology could one day enable warfighters and analysts to take seemingly unrelated information and reveal underlying behavior—a valuable commodity in fighting the Global War on Terrorism.

December 2008
By Maryann Lawlor

The Defense Advanced Research Projects Agency has embarked on a quest to develop a soda-can-size robot that can shape shift enough to fit through a hole the diameter of a quarter. Working with industry and academia, the agency’s Chemical Robots program seeks to create a new class of soft, flexible, meso-scale mobile device that can navigate through arbitrarily shaped openings. As envisioned, the robot would then perform tasks related to search and rescue or reconnaissance, depending on the payload.

Pages