Search:  

 Blog     e-Newsletter       Resource Library      Directories      Webinars
AFCEA logo
 

Tactical Operations

Korean Military Networks Flourish Under Duress

November 1, 2013
By Robert K. Ackerman

The signal brigade in charge of U.S. Army communications in the Republic of Korea is incorporating new technologies and capabilities with one eye on ensuring success and the other eye on the hostile neighbor to the north. System improvements such as the advanced Warfighter Information Network-Tactical, voice over Internet protocol and a Korean theater version of the Joint Information Environment are designed to give allied forces a significant edge should war break out.

Pacific Air Forces Addresses Strategic
 Rebalance

November 1, 2013
By Rita 
Boland

Cooperation and conflict define the new strategy guiding U.S. Pacific Air Forces as the air element of the U.S. Pacific Command adjusts to the strategic pivot to that vast region. The former aspect includes efforts with many regional allies as well as closer activities with the U.S. Navy. Meanwhile, the latter element entails power projection to be able to respond to crises whenever they emerge, including those over water.

Software Assists Signal Officers

September 30, 2013
By George I. Seffers

U.S. Army researchers are developing a software program that will provide signal corps officers will an improved common operating picture of the network, enhance the ability to manage the plethora of electronic systems popping up on the modern battlefield, advance information sharing capabilities and allow warfighters to make more informed and more timely decisions. In short, the system will assist in planning, building, monitoring and defending the network.

As the number of electronic devices on the modern battlefield rapidly expands, the job of the battalion and brigade signal officer, known as the S-6, grows increasingly complex. The S-6 oversees the deployment of all communications equipment. The communications officer is responsible for the supervision of all automated information systems, network management, computer network defense, electromagnetic spectrum operations and information assurance.

Sometimes, however, it is not possible for the communications officer to even know what devices, or how many, are connected to the network. And many factors, such as terrain, weather, technical difficulties and enemy activities, including jamming or cyber attacks, can disrupt the network. But the S-6 Associate software being developed at the Army Communications-Electronics Research, Development, and Engineering Center (CERDEC) will consolidate information on existing systems and simplify network monitoring. Among other benefits, S-6 Associate improves data sharing between systems used by the S-6 and the intelligence (S-2) and training and operations (S-3) functions.

New Systems Seek to Connect Troops at the Tip of the Spear

September 4, 2013
By Henry S. Kenyon

Two ongoing military programs, the ready-to-deploy Solider Network Extension (SNE) and the Content-Based Mobile Edge Networking (CBMEN) program now in prototype, aim to connect troops at the very tactical edge back to larger military data and communications networks. These programs—one service-oriented, the other an agency effort—are part of the Defense Department’s thrust to make warfighters, especially individual soldiers in small units, more connected.

Working Toward
 Worldwide Interoperability

September 1, 2013
By George I. Seffers

The working group that helped solve the coalition interoperability puzzle in Afghanistan is working across the U.S. Defense Department and with other nations to ensure that the lessons learned will be applied to future operations around the globe. Experience in creating the Afghan Mission Network may benefit warfighters worldwide, such as those in the Asia Pacific, and may even be applied to other missions, including homeland security and humanitarian assistance.

Special Ops Hunts for Psyops Tool

August 26, 2013

The U.S. Special Operations Command (SOCOM) is seeking radio broadcast systems that can search for and acquire every AM and FM radio station in a region and then broadcast a message across the specific area. This capability would be used to share information simultaneously with residents in locations where unrest or natural or manmade disasters make it difficult to communicate. The synchronous over-broadcast system must be lightweight, able to operate on multiple frequencies and demonstrated at a technology readiness level 8 or higher.

To propose their secure communications system, companies must submit a summary outline not to exceed five pages that describes the performance specifications. Submissions must include name, address, phone and fax numbers, and email address for all points of contact.

This is a sources sought announcement only. If SOCOM decides to acquire one of the proposed systems, a pre-award synopsis will be posted on FedBizOpps.gov to pursue procurement.

C4ISR Has Come a Very Long Way 
for Government and AFCEA

August 1, 2013
By Kent R. Schneider

 

My reflections on C4ISR are flavored by my recent reading of the book “From Pigeons to Tweets” (SIGNAL Magazine, April 2013, page 66) by Lt. Gen. Clarence “Mac” McKnight, USA (Ret.). In his book, Mac recounts the changes in every aspect of the U.S. Army Signal Corps and the defense environment over the course of his long and distinguished career. Most prominent among these changes were the evolution of technology and capability, and what this meant to command and control and intelligence over time. If you haven’t read Mac’s book, I recommend it.

Through the lens of my nearly 44 years in and around C4ISR, I have seen the transition from paper maps, acetate and grease pencils for situational awareness and single-channel push-to-talk radio, as well as laying and retrieving field wire and multipair cable; installing and continuously reinstalling tropo and microwave multichannel radio; and using couriers and liaison officers for much of our information sharing. I remember using torn-tape relay for message traffic. But I also remember implementing the Army’s first email system and the Army’s first wide-area network. And I am awed today by the tremendous capability that exists in computing, big data, mobility, cloud variants and security. I am amazed at the incredible bandwidth available down to the lowest organizational levels. I also am impressed with the vulnerability that has resulted from all this progress.

Building
 a Bigger,
 Better Pipe

August 1, 2013
By Max Cacas

 

Scientists at the U.S. Defense Department’s top research and development agency are seeking the best new ideas to provide a larger-scale mobile network to support an increasing array of bandwidth-hungry mobile computing devices for warfighters.

The Defense Advanced Research Projects Agency (DARPA) has issued a Request for Information (RFI) for new technical approaches that would expand the number and capacity of Mobile Ad Hoc Networks (MANETs) nodes available in the field.

“When we look at MANETs, it’s really tough to deliver networking services to more than about 100 users,” says Mark Rich, program manager, DARPA Strategic Technology Office. Those 100 users translate into approximately 50 nodes on a mobile wireless network operating in a forward location, generally supporting everything from tactical and operational systems to advanced video services. All of these functions are carried on a service that is largely dependent on highly secure digital radio systems. Once that limit is reached, network services begin to deteriorate in quality and effectiveness. To support larger deployments or to cover a greater area, military communications experts usually knit smaller networks using other available means, such as satellites.

Smartphone Increases Soldier Intelligence

July 26, 2013

10th Mountain Division U.S. Army Rangers and soldiers on the battlefield are now wearing commercial smartphones to communicate with each other and higher commands. Nett Warrior is a Samsung Galaxy Note II with its commercial memory wiped clean and Army-developed software loaded. It displays the locations of fellow soldiers, allows placement of location digital chem-light markers, and enables warfighters to communicate through texting. This information is then relayed to commanders over encrypted tactical radios.

“We are beholden to the commercial industry,” Jason Regnier, project manager, Nett Warrior, PEO Soldier, says. At approximately $700 per unit, buying the devices commercially costs substantially less than procuring similar devices from contractors, he explains.

In addition, the ability to buy newer versions of a device as technology matures means soldiers can transition to up-to-date capabilities as they develop. “So when the Note IIs are gone, they’re gone. Then we’ll have to be ready to buy Note IIIs or whatever it’s going to be,” Regnier relates.

Before the smartphones are integrated into a Net Warrior system, most of the communications capability is disabled, including the cellular antennas and the Wi-Fi and Bluetooth capabilities. A USB connection with a soldier’s hip-mounted Rifleman Radio enables communication.

Spectrum Management System Deploying to Afghanistan

July 11, 2013
By George I. Seffers

The U.S. Army is currently delivering a new and improved Coalition Joint Spectrum Management and Planning Tool (CJSMPT) to divisions scheduled for deployment in Afghanistan. The software automates the spectrum management process, dramatically reducing the amount of time and paperwork associated with spectrum allocation and mission planning in a tactical environment.

For operational security reasons, Army officials cannot reveal exactly which divisions will be receiving the systems or when, but for the next few months, they will be working to get the system out to Afghanistan.

Warfighters are continually confronted with an increasingly crowded radio spectrum—too many devices transmitting on a limited range of frequencies and interfering with one another. Poor spectrum availability can have a devastating effect on operations, and spectrum management normally is a complex and time-consuming process involving frequency access requests that must be approved at multiple levels. “There’s a lot of paperwork associated with the spectrum management process. There are thousands of these [requests] that have to be prepared, submitted, received and reconciled down at the brigade level. Normally, this could take days or even weeks in preparation for a mission or deployment, and CJSMPT can do this in a matter of hours. It provides automation to the spectrum manager to reduce the complexity of his tasks,” says Bob Shields, chief of the Spectrum Analysis and Frequency Management Branch, Space and Terrestrial Communications Directorate, U.S. Army Communications-Electronic Research, Development and Engineering Center (CERDEC), Aberdeen Proving Ground, Maryland.

Pages

Subscribe to RSS - Tactical Operations