The synergy between operational planning and radar sensing provides enhanced search and rescue capabilities.
The U.S. Coast Guard is combining high-frequency coastal radar data with traditional oceanographic and geographic information to improve its chances of rescuing people in distress on the high seas. By merging these different sources of data, the Coast Guard enhances its search abilities while also providing better weather prediction for both its search and rescue teams and an endangered public in coastal areas.
This combining of different data types requires more than just technological interoperability. It also mandates cooperation between two different government organizations: the Coast Guard and the National Oceanic and Atmospheric Administration (NOAA). Both groups have been expanding their cooperation, and the results have been synergistic.
The utility of this approach was demonstrated when Superstorm Sandy struck the Eastern Seaboard in October 2012. The Coast Guard prosecuted 159 search and rescue (SAR) cases before, during and after Sandy made landfall. One of those cases was the sailing vessel HMS Bounty, which foundered and sank at the height of the storm off the coast of North Carolina. Aircrews from Air Station Elizabeth City plucked 14 crewmembers from the raging seas that night.
Two Bounty crewmembers did not survive—Claudene Christian, whose body was recovered, and the captain, Robin Walbridge, who was lost to the sea. In addition to two helicopters, a C-130 Hercules aircraft, an HC-144 Ocean Sentry aircraft, the high-endurance cutter Gallatin (WHEC-721) and the seagoing buoy tender Elm (WLB-204) supported the four-day search covering some 12,000 square miles of ocean, battling 30-foot seas and 60-knot winds, trying, ultimately in vain, to locate Captain Walbridge.