Search:  

 Blog     e-Newsletter       Resource Library      Directories      Webinars  Apps     EBooks
   AFCEA logo
 

unmanned systems

Navy Artificial Intelligence Aids Actionable Intelligence

December 1, 2013
By George I. Seffers

To ease the load on weary warfighters inundated with too much information, U.S. Navy scientists are turning to artificial intelligence and cognitive reasoning technologies. Solutions that incorporate these capabilities could fill a broad array of roles, such as sounding the alarm when warfighters are about to make mistakes.

Littoral 
Combat Ship 
Loaded With 
Unmanned
 Systems

December 1, 2013
By George I. Seffers

The U.S. Navy intends to deploy an arsenal of airborne, surface and underwater unmanned systems for its new shallow-water combat ship. The array of unmanned systems will extend the ship’s intelligence, surveillance and reconnaissance capabilities, enhancing awareness of enemy activities, and will reduce the number of sailors deployed to minefields, saving lives.

Developmental UUVs Offer Offense, Defense From Anywhere

November 25, 2013
By Rita Boland

The U.S. Navy is expanding its autonomous subsurface fleet with the introduction of a platform designed for persistent intelligence, surveillance and reconnaissance as well as offensive capabilities.

Intelligence Leaders Seek Common Interests With China

November 1, 2013
By George I. Seffers

The U.S. Pacific Command intelligence community is fostering an increased dialogue between China and other nations with interests in the Pacific Rim. The expanded effort is designed to build trust, avoid misunderstandings and improve cooperation in areas where China’s national interests converge with the national interests of the United States and others.

New Cryptographic Device Destined for Drones

October 1, 2013
By George I. Seffers

U.S. Navy researchers are developing a state-of-the-art encryption device for integration onto KC-130 tankers and unmanned aerial systems. An existing version of the device is being installed onto B-52 bombers, E-4s, which serve as airborne command centers for the U.S. president and other National Command Authority officials, and E-6s, which are command and control centers for nuclear weapons. The encryption system can be integrated into virtually any platform and offers backward-compatible, software-definable algorithms that can be updated during operations without downtime.

It is that ability to load algorithms without downtime that researchers tout as one of the biggest benefits of the new system. “This is critical for the ability of the warfighter to be able to replace algorithms as they become obsolete. You don’t have to take a platform offline like almost every other crypto out there now,” says Stanley Chincheck, director, Center for High Assurance Computer Systems, Naval Research Laboratory (NRL), Washington, D.C. “You can do that while it is up and running. That is a unique feature that many crypto devices just don’t have.”

Chincheck cannot reveal a lot of details because of security concerns, but KC-130s and unmanned aerial vehicles (UAVs) will receive the next incarnation of the Programmable Embeddable INFOSEC (Information Security) Product (PEIP, pronounced peep). The version under development is known as PEIP III. The other aircraft—B-52s, E-4s and E-6s—are receiving the current version, PEIP II.

Subcommittee Chair Urges COTS Use

August 6, 2013

 

Rep. Duncan Hunter (R-CA) is encouraging the U.S. Coast Guard to work with industry to identify the latest unmanned vehicles to improve maritime safety and security while saving money. In a recent Congressional Subcommittee on Coast Guard and Maritime Transportation hearing, Hunter, the chairman of the subcommittee, shared that he has seen a commercially built autonomous surface vehicle that can facilitate sub-sea to surface to satellite communications.

“The Coast Guard should be the one who experiments with this type of technology, who puts it to use, who saves a lot of money doing it and [who] don’t have to go through any government contractors at all because it’s out there sitting waiting for you to buy it. You don’t have to necessarily know what to call it to know that it can save you lots of money, make you very efficient and more effective on the ocean,” Hunter said.

The congressman saw the demonstration of Wave Glider autonomous vehicles during a visit to Liquid Robotics, developers of the technology. The marine robots can remain at sea for months or even years at a time by tapping into the energy supplied by waves and the sun.

 

People Are the Future of Unmanned Systems

August 1, 2013
By Rita Boland

 

The U.S. Army is working to ensure the future of autonomous air platforms by reaching out to the emerging talent in the academic world. Earlier this year, soldiers signed a memorandum of understanding with the University of Alabama in Huntsville to engage students with work in this field as part of their education. The program aims to develop an innovative and prepared workforce in the future. Graduates not only will have had a more specific focus for their studies, but they also will be prepared better for the job market. Shaping studies now helps ensure that necessary skills are available to and even present in the Army later, according to officials from both the military branch and the institute of higher education.

Through the memorandum, the groups will share goals and ideas so students can work on technology while gaining critical skills. Lt. Col. Robb Walker, USA, director of external programs in the Army’s Unmanned Aircraft Systems (UAS) Project Management Office, explains the approach is about talking to each other and explaining to the academics what the Army is pursuing.

Artificial Fish Dives Into Unknown Waters

August 1, 2013
By Max Cacas

 

Domestic security officials aim to replace human divers with an autonomous underwater vehicle whose design is derived from nature: the tuna, one of the fastest and most maneuverable fish in the sea. The vehicle would be used primarily to inspect ship hulls for contraband, saving divers from hazardous trips into hard-to-reach areas below the waterline where oil and other toxic chemicals are part of the mix. Designers also envision the tuna-modeled robot could also be used for search and rescue missions.

The Biomimetic In-Oil Swimmer (BIOSwimmer) is an autonomous underwater vehicle (AUV) being developed by Boston Engineering Corporation’s Advanced Systems Group, in Waltham, Massachusetts, for the U.S. Department of Homeland Security (DHS). This tuna look-alike can be operated either by remote control with a tethered cable or pre-programmed to operate autonomously, according to David Taylor, specialist, cargo security, Border and Maritime Security Division, Science and Technology Directorate, DHS, and program manager for the BIOSwimmer program.

“It was originally designed as a vehicle that could go inside cargo tanks and look in oil cargos for contraband,” he explains. Based on subsequent feedback from DHS Customs and Border Protection (CBP) field officers, the BIOSwimmer’s design has been modified to function primarily as an AUV that examines ship hulls.

Software Increases 
Unmanned Craft Survivability

August 1, 2013
By George I. Seffers and Robert K. Ackerman

 

The U.S. Defense Advanced Research Projects Agency is developing new control software to reduce the vulnerability of unmanned systems to cyber attack. This effort is relying on new methods of software development that would eliminate many of the problems inherent in generating high-assurance software.

Unmanned vehicles suffer from the same vulnerabilities as other networked information systems. But, in addition to their data being co-opted, unmanned systems can be purloined if adversaries seize control of them. This problem also applies to human-crewed systems with computer-controlled components.

If the research program is successful, then unmanned vehicles will be less likely to be taken over by an enemy. Warfighters could trust that the unmanned vehicle on which they are relying will not abandon its mission or become a digital turncoat.

This security would extend to other vulnerable systems as well. Networked platforms and entities ranging from automobiles to supervisory control and data acquisition (SCADA) systems could benefit from the research. The vulnerability of SCADA systems is well-established, but only recently has research shown that automobiles can be co-opted through their computer-controlled systems. The program’s goal is to produce high-assurance software for military unmanned vehicles and then enable its transfer to industry for commercial uses.

The Defense Advanced Research Projects Agency (DARPA) program is known as High-Assurance Cyber Military Systems, or HACMS. Kathleen Fisher, HACMS program manager, says the program is aiming to produce software that is “functionally correct and satisfying safety and security policies.

“It’s not just that you’re proving the absence of a particular bad property from the security perspective,” she explains. “You’re actually positively proving that the software has the correct behavior.”

Coping With the 
Big Data Quagmire

August 1, 2013
By George I. Seffers

 

Researchers at one of the premier national laboratories in the United States are prepared to hand the Defense Department a prototype system that compresses imagery without losing the quality of vital data. The system reduces the volume of information; allows imagery to be transmitted long distances, even across faulty communications links; and allows the data to be analyzed more efficiently and effectively.

The Persistics computational system developed at Lawrence Livermore National Laboratories (LLNL) derives its name from the combination of two words: persistent surveillance. The system is designed to revolutionize the collection, communication and analysis of intelligence, surveillance and reconnaissance (ISR) data so that warfighters do not find themselves drowning in a swamp of too much information. The ground-based system has demonstrated 1,000 times compression of raw wide-area video collections from manned and unmanned aircraft and a tenfold reduction of pre-processed images. Standard video compression can achieve only a 30 times data reduction.

The existing data processing infrastructure for national security is not designed for the amounts of information being generated by unmanned aerial systems and other platforms. In addition, the communication bandwidth supporting data transmission for air to ground and the archive storage capability are too slow to support fast-turnaround human analysis, according to LLNL researchers. “These [ISR] cameras are picking up more data than we know what to do with, and there are not enough humans on the ground to analyze every pixel,” explains Sheila Vaidya, deputy program director, defense programs, Office of Strategic Outcomes, LLNL.

Pages

Subscribe to RSS - unmanned systems