quantum computing

July 1, 2019
By George I. Seffers
The NSF’s Quantum Leap initiative includes a number of programs aimed at advancing the quantum technology research and helping the United States maintain a competitive edge over other nations.  Nicolle R. Fuller/ NSF

The National Science Foundation (NSF) is investing in a number of research institutes designed to advance quantum technologies in four broad areas: computation, communication, sensing and simulation. The institutes will foster multidisciplinary approaches to specific scientific, technological, educational, and workforce development goals in quantum technology, which could revolutionize computer and information systems.

May 2, 2019
 

International Business Machines Corp., Yorktown Heights, New York, has been awarded a $7,500,000 other transaction agreement for experimental purposes to provide an IBM Q access license. This agreement provides for remote access to the IBM Q System, a quantum computer with approximately 20 to 50 qubits. Work will be performed in Yorktown Heights, New York, and is expected to be complete by April 30, 2022. Fiscal year 2019 research and development funds in the amount of $5,000,000 are being obligated at the time of award. Air Force Research Laboratory, Rome, New York, is the contracting activity (FA8750-19-9-0334).

January 7, 2019
Posted by George I. Seffers
Research at Sandia National Laboratories may help shape the future of quantum computing. Credit: TheDigitalArtist/Pixabay

Four newly announced projects led by Sandia National Laboratories aim to advance quantum computing technology, according to an announcement from the laboratories.

The efforts include: a quantum computing testbed with accessible components on which industrial, academic and government researchers can run their own algorithms; a suite of test programs to measure the performance of quantum hardware; classical software to ensure reliable operation of quantum computing testbeds and coax the most utility from them; and high-level quantum algorithms that explore connections with theoretical physics, classical optimization and machine learning.

August 9, 2018
By Jane Melia
Solving the key and policy management challenge may be the hardest part of an encryption deployment. Credit: Tumisu/Pixabay

The U.S. Office of Management and Budget released a report this spring showing the abysmal state of cybersecurity in the federal government. Three-quarters of the agencies assessed were found to be “at risk” or “at high risk,” highlighting the need for a cyber overhaul. The report also noted that many agencies lacked “standardized cybersecurity processes and IT capabilities,” which affected their ability to “gain visibility and effectively combat threats.” 

July 1, 2018
By Justin Sherman and Inés Jordan-Zoob
The Uran-9 unmanned ground combat vehicle took part in the 2018 Moscow Victory Day Parade on Red Square earlier this year. Credit: Dianov Boris/Shutterstock.com

The cyber realm has redefined the meaning of warfare itself. Conflict in cyberspace is constant, low-cost and uninhibited by traditional definitions of territory and country. Now, governments, militaries and private research groups from America to South Korea are taking cyber capabilities one step further, using developments in artificial intelligence and machine learning to create autonomous weapons that will soon be deployed into battle.

Machine learning already has been used in both cyber and kinetic weapons, from autonomously firing gun turrets to human-superior social engineering attacks. While these advances are noteworthy, these machines are neither entirely intelligent nor autonomous.

June 20, 2018
By Jane Melia
Cybersecurity trends so far this year include a stern reminder that the threat of nation-sponsored cyber attacks cannot be ignored. Credit: TheDigitalArtist/Pixabay

With the arrival of June, we’re at the halfway point of an already busy year for the cybersecurity industry. With each passing year, our sector continues to demonstrate its evolving approach to fighting cyber threats, as cyber crime itself continues to evolve.

As both business and government move forward with digital transformation initiatives to improve processes and efficiency, the overall security attack surface continues to expand with more potential points of access for criminals to exploit. However, our industry is tackling these challenges head-on, with numerous innovative solutions continuing to come to market.

June 1, 2018
By Jane Melia
Credit: Den Schrodinger/Shutterstock

The potential geopolitical consequences of quantum communications will result in clear asymmetries in both knowledge and confidentiality of information. Countries whose data can be protected through quantum communication techniques will have a significant information advantage, a situation that would have important, albeit hard to predict, effects on geopolitical developments.

May 1, 2018
By Henry S. Kenyon
Researchers with the National Institute of Standards and Technology (NIST) have developed a communications system that uses quantum principles to detect low frequency magnetic waves. The technology promises to enable first responders and warfighters to communicate underground and in buildings and mariners to communicate underwater.

A quantum physics-based technology developed by National Institute of Standards and Technology researchers may enable first responders, warfighters and mariners to communicate and navigate in areas where radio and satellite-based communications are limited or nonexistent. The capability would allow military and emergency personnel to stay connected in urban canyons, under rubble, inside buildings, underground or even underwater.

April 11, 2018
By George I. Seffers
NIST researchers have developed a prototypical method for generating verifiably random numbers for quantum encryption. Credit: K. Irvine/NIST

Researchers at the National Institute of Standards and Technology (NIST) have developed a method for generating numbers guaranteed to be random by quantum mechanics. Generating truly random numbers is one of the major challenges for quantum-based encryption and could mark a major leap in cybersecurity.

April 2, 2018
By Bob Gourley and Jane Melia
Without truly random encryption, the Internet of Things will not be effectively secured. Credit: geralt/Pixabay

The Internet of Things (IoT) has security issues. The fundamental weakness is that it adds to the number of devices behind a network firewall that can be compromised. Not only do we need to safeguard our computers and smartphones, now we must worry about protecting our homes, vehicles, appliances, wearables and other IoT devices.

August 15, 2017
 

University of Southern California, Los Angeles, California, has been awarded a $9,000,000 modification (P00001) to contract W911NF-17-C-0050 for basic research in quantum computing. Work will be performed in Los Angeles, California, with an estimated completion date of June 8, 2019. Fiscal 2017 operations and maintenance (Army) funds in the amount of $8,777,000 were obligated at the time of the award. U.S. Army Contracting Command, Research Triangle Park, North Carolina, is the contracting activity.

May 1, 2017
By George I. Seffers

The U.S. government is racing to identify technologies that will resist the threat from quantum computers, which will render today’s encryption obsolete.

April 24, 2017
 

The Intelligence Advanced Research Projects Activity (IARPA) has awarded a research contract in support of the Quantum Enhanced Optimization (QEO) program to an international team led by the University of Southern California. With the award, IARPA, which is within the Office of the Director of National Intelligence, embarked on a multi-year research effort to develop special-purpose algorithms and hardware that harness quantum effects to surpass conventional computing.

April 13, 2017
By Jane Melia

While we are all still in the early stages of a networked, always-on Internet of Things world, this is the precise time to develop crucial and effective cybersecurity solutions to combat growing threats. The developing ecosystem needs new ideas for bold government actions, particularly to reduce the risks of quantum computers.

Quantum Threats Looming

December 21, 2016
By Sandra Jontz

Calling all codebreakers. The National Institute of Standards and Technology, or NIST, needs the public's help to head off what officials say is a looming threat to information security: quantum computers.

It is believed that futuristic quantum computers significantly will outperform the supercomputers of today, an advancement that potentially could break encryption codes used to protect privacy in digital systems. The agency needs methods and strategies from the world’s cryptographers.

August 1, 2016
By George I. Seffers
Scientists at the Joint Quantum Institute have created a crystal structure that boosts the interaction between tiny bursts of light and individual electrons, an advance that could be a significant step toward establishing quantum networks in the future.

If all goes well with its most recent five-year review, the Joint Quantum Institute will receive a renewal of research dollars next month to continue exploring quantum mechanics and quantum phenomena. The fundamental science could one day lead to revolutionary sensors, electronic devices and computers.

“We’re really pushing the edge of what you can do with technologies,” says Gretchen Campbell, who in April was appointed co-director of the Joint Quantum Institute (JQI). “At the theoretical level, of course, there’s the need to push the frontiers of knowledge.”